首页天道酬勤香港中文博士申请(香港中文大学博士毕业)

香港中文博士申请(香港中文大学博士毕业)

admin 11-30 07:34 248次浏览

编辑:LRS

【新智元导读】Transformer在图像分类任务上经过充分训练已经足以完全超越CNN模型,但GAN仍然是Transformer无法踏足的领域。最近港中文博士提出首个基于Transformer的条件GAN模型STransGAN,缓解了Transformer的部分问题,但成像质量仍不如CNN。

Transformer不仅擅长自然语言表达,在计算机视觉方面也有其潜力,不断称霸CV榜单。

Transformer的成功主要归功于注意力层的表达学习能力,这也可以支持Transformer模型在其他领域的应用。

最近,一些研究人员用Transformer代替了发电对抗网(GAN)中常用的CNN骨干网进行图像合成。以往的一些研究结果表明,将Transformer直接应用于GAN并不容易,尤其是在之前为分类而设计的GAN中,往往会导致CNN图像合成性能的下降。

例如,与基于CNN的StyleGAN2实现的3.16 FID相比,ViT作为骨干网的GAN模型在6464 Celeba数据集上只实现了8.92的FID。弗雷切特入射距离(FID)计算结果是真实图像的计算特征向量和生成图像之间的距离。

此外,这种Transformer结构还会使GAN网络的训练更加不稳定,严重依赖于超参数的人工调整。

针对这一问题,香港中文大学的研究人员发表了一篇论文,旨在了解GAN模型中Transformer的内在行为,从而缩小基于Transformer的GAN模型与基于CNN主干的GAN模型之间的性能差距。本文不仅研究了无条件图像合成,还研究了如何少探索条件设置。

本研究也是基于Transformer的GAN模型首次在条件设置下成功应用。

本文第一作者为tsdl,目前为香港中文大学多媒体实验室四年级博士生。导师为唐晓鸥教授,毕业于清华大学电子工程系。主要研究方向为深入研究及其在计算机视觉中的应用,正在进行的工作包括图像/视频绘制和图像合成。他在图像/视频分割、检测和实例分割方面具有丰富的研究经验。

研究结果主要为变压器在氮化镓中的应用提供了三个实用的设计原则:

1.地点非常重要。

特征提取的局部性对于Transformer在图像分类中的效率和性能非常重要,在GAN图像生成实验中也可以观察到同样的结果。特别是现有的基于transformer的GANs中实现的全局自关注操作会降低图像合成的性能,在计算上无法应用于高分辨率图像生成。在这些方法中,Swin Layer被证明是提供局部诱导偏差的最有效的模块。

本文提出了一种新的基于Transformer的GAN网络架构设计,生成器部分称为streams-g。

该模型从一个简单的基线结构Trans-G开始,它由标准的可视化Transformer块组成。然而,Trans-G生成的样本通常包含严重的伪影和违规细节,导致视觉质量较差。

通过分析注意力层的内在行为,我们可以发现全局注意力总是打破图像数据的局部性,尤其是在合成高分辨率特征时。

这一发现也促使研究人员探索各种局部注意机制在生成真实高分辨率图像中的作用。在仔细比较不同的局部注意机制后,最终选择Swin架构作为模型架构块,构建了一个无CNN生成器STrans-G。注意力距离的进一步分析

清楚地显示了全局注意和局部注意之间的差异。

2、留意判别器(discriminator)中的残差连接。

Transformer 在每个自注意力层的子层和点全连接层(pointwise fully connected layer)上使用残差连接。通过对kydhj的详细分析,可以发现在基于Transformer 的判别器中,残差连接往往主导信息流。在判别器中执行自注意力和全连接操作的子层在训练过程中被无意中绕过,从而导致图像合成质量低下和收敛缓慢。研究人员通过将每个残差连接替换为跳跃投影层来解决这个问题,这样可以更好地保持残差块中的信息流。

判别器部分称为STrans-D,包括了一些经验上的策略。

首先采用轻量级卷积块将原始输入采样降低4倍,并将图像yxdl投影到任意维度,而不是像大多数视觉Transformer那样从embedding模块开始。卷积token 抽取器与patch embedding相比,采用了重叠的patch,保留了更多的细节信息。

第二,研究人员在所有注意力模块和MLP中采用均衡学习率(equalized learning rate)。这是由判别器中的Transformer块在使用小学习率来稳定其训练时的缓慢和不满意的收敛所做出的改变。通过在整个判别器中设置一个更大的学习率可以解决这一问题,并引入了一种特殊的sclaer,在运行时将Transformer 块的可学习参数相乘。

此外,研究人员将GeLU替换为LeakyRelu,并在注意和MLP模块的末尾添加非线性激活函数。

3、为Transformer 单独设计策略,而非条件正则化。

研究人员发现,传统的注入条件信息的方法对基于Transformer的条件GAN没有很好的效果。ttdwg是通过Transformer生成器中的残差连接在大信息流中。如果将条件信息注入主分支,那基本上都被忽略掉了,对最终输出几乎没有任何影响。研究人员提出了一种在主干中采用条件归一化层的可行方法,有助于在整个Transformer生成器中保留条件信息。

一个尝试是在Transformer块中直接采用AdaLN,但没有取得效果。特别是研究人员发现FID在前期的训练不再下降了。为了找到故障的发生处,研究人员又绘制了此基线配置的标准比率。存在多个具有高kydhj的块,表明主分支中的一些AdaNorm层对中间特征的贡献很小,导致条件信息丢失。

为了保证条件信息的注入,一个简单的解决方案是将AdaNorm应用于trunk。通过这种方式,保证了shortcut 和MLP分支的特性都包含类别的信息。

在实验部分,为了降低计算成本,研究人员将Transformer块中MLP模块的信道扩展率设置为2。输入token维度为512,默认采用四个注意力header。选择Adam优化器(β1=0,β2=0.99)来训练生成器和判别器。Strans-G和Strans-D分别以0.0001和0.002的学习率进行优化。

在无条件的生成中,Strans-G在Celeba 64x64中显著地超出了之前的所有方法。它在FFHQ 256x256的高分辨率设置方面也取得了相当的性能。

对于条件图像生成,在提出的Adain-T层中,Strans-G将CIFAR10上的SOTA起始分数从10.14提高到11.62。由于CIFAR10是一个被广泛采用的数据基准,这一结果也表明了STrans-G在有限数据下模拟真实分布的稳健性。

在成像评估中,可以观察到Strans-G和基于CNN的Biggan模型之间存在相当大的差距。结果表明,与广泛使用的CNN 模型相比,基于Transformer 的GAN 仍然有改进的空间。

此外,这项研究首次显示了Transformer在ImageNet数据集中的潜力。

参考资料:

https://arxiv.org/abs/2110.13107

Mybatis的动态Sql组合模式怎么实现雷士灯具管理系统
android api版本(android打开api文档) 亚马逊0计划和透明计划(亚马逊fba计划)
相关内容