首页天道酬勤开关电源电路原理(开关电源变压器原理)

开关电源电路原理(开关电源变压器原理)

admin 12-01 11:07 636次浏览

独立激励开关电源控制集成电路由模拟电路和数字电路组成。典型的UC/KA3842和TL494介绍如下。

(1)UC/KA3842

UC/KA3842是一款单端输出脉宽控制芯片。它是一种高性能的固定频率电流模式控制电路。由UC/KA3842构成的开关电源广泛应用于彩电、彩色显示器、VCD、DVD、充电器、卫星接收机等电子设备中。其主要优点是外部元件少,结构简单,成本低。UC/KA3842和UC/KA3843有两种封装结构:双列直插式Minidip(DIP)和双贴片SO8。如图2-53所示,其引脚功能如表2-24所示。

图2-53 UC/KA3842物理和内部组件框图

表2-24 UC/KA3842引脚功能和参考电压数据

指出

Uc3842 ~ uc3845/uc2842 ~ uc2845属于系列产品。只有电源端的引脚的起始电压和闭合电压与激励脉冲输出端的引脚输出的激励信号的最大占空比不同。见表2-25。

表2-25 UC 3842 ~ UC 3845/UC 2842 ~ UC 2845主要参数

特点:当UC3842的引脚电压达到16V时,UC3842中的启动电路启动,由5V基准电压形成电路产生5V电压,不仅由引脚输出,还为其内部振荡器、PWM调制器等电路供电。振荡器通电后,开始工作。外部连接到引脚的RC元件用于产生振荡脉冲。该脉冲经逻辑电路处理后产生矩形脉冲,经推挽放大器放大后从引脚输出。当引脚的输入电压增加或引脚的电位降低时,引脚输出的脉冲占空比降低。然而,当引脚输入的电压升高时,引脚输出的激励脉冲的占空比也会降低。

典型电路模式识别:以图2-54所示的LG FB775FT彩色显示器开关电源为例,介绍以UC/KA3842为核心的开关电源模式识别方法。该电源是以KA3842(IC901)、开关管Q901和开关变压器T901为核心的并联单独励磁开关电源。

外部连接到KA3842的引脚的R904、C913和D901构成启动电路,为KA3842提供启动电压;由D906和C913组成的整流滤波电路为KA382提供启动工作电压;由R911、D904和C911组成的整流滤波电路为稳压控制电路提供采样电压。引脚的外部VR901和R912~R914构成误差采样电路,R914两端的电阻值由Q902是开还是关来控制。线扫描电路不工作时,线输出变压器T701无线反向脉冲输出,Q902关断,R914两端电阻为其标称电阻;行扫描电路工作后,T701输出的脉冲电压经D912整流,经R930限流,经C916滤波,再经R911导通Q902,导致R914两端电阻下降。外接管脚的R926、C918为振荡器的外部定时元件,C914、R928、D911、R929为线频触发脉冲输入元件;外接管脚的R925、R918、R918、C915构成开关管电流检测信号输入电路。

图2-54主电源电路2-54 LGFB775FT彩色显示器

(2)TL494

TL494的内部结构如图2-55所示,引脚功能和维护参考数据如表2-26所示。TL494的引脚是输出模式设置端。接5V电压时,TL494的输出方式设置为双端输出方式;当为低电平时,输出模式为单端(最后一个放大器并联)。

图2-55 TL 494的内部组成

表2-26 TL 494引脚功能和维护参考数据

下面是图2-56所示的BMCH-36智能充电器的一个例子。其中,TL494及相关元器件构成功率变换器部分,HA17358(与LM358相同)及相关元器件构成电压。

检测和控制部分。

功率变换:该变换器采用了自激启动、他励工作方式。自激式启动电路由开关管V1、V2,电阻R30~R33以及变压器T2和T3等元器件组成,他励工作方式由PWM控制芯片TL494和相关元器件构成。由于TL494的 13 脚接5V电压,所以TL494的输出方式被设置为双端输出方式。

接通电源瞬间,由市电变换电路产生的310V电压不仅加到V1的c极,而且通过启动电阻R32和限流电阻R33限流后加到V1的b极使其导通。V1导通后,300V电压通过V1的c/e极、激励变压器T2的2-4绕组、开关变压器T3的1-2绕组、C17到地构成回路。回路中的电流在T3的一次绕组上产生②脚正、①脚负的电动势,在T2的2-4绕组上产生②脚正、④脚负的电动势,于是T2的1-2绕组产生①脚正、②脚负的感应电动势,T2的3-5绕组产生③脚正、⑤脚负的电动势。3-5绕组的电动势使开关管V2截止,1-2绕组输出的电动势通过C14、R33反馈到V1的b极,使V1迅速进入饱和状态,流过T3的1-2绕组的电流线性增大,当磁感应强度增大到饱和点时,电流急剧下降,由于电感中的电流不能突变,所以T2和T3各个绕组产生反向(相)电动势。T2的1-2绕组产生反相的脉冲电压后使V1迅速截止,而3-5绕组产生反向电动势后通过C13和R31使V2导通,此时,C17两端电压通过T3的1-2绕组和T2的2-4绕组、V2的c/e极到地构成回路。回路中的导通电流使T3的1-2绕组产生①脚正、②脚负的电动势,T2的2-4绕组产生④脚正、②脚负的电动势,随后V2截止,使T2、T3各个绕组再次产生反向的电动势,于是使V1再次导通,重复以上过程,V1和 V2 工作在自激振荡状态。该电源进入自激状态后,T3 的二次绕组输出的脉冲电压经 D9和D10全波整流、C17滤波产生直流电压。

C17两端产生的电压加到电源控制芯片TL494(IC1)供电端 12 脚,通过IC1内的基准电源形成5V电压,该电压不仅为IC1内部的触发器、比较器、误差放大器、振荡器等电路供电,而且从 14 脚输出,为充电控制电路提供参考电压。振荡器获得供电后,它与⑤脚、⑥脚外接的定时元件C10、R20通过振荡产生锯齿波脉冲电压。该锯齿波脉冲作为触发信号,控制PWM比较器产生矩形激励脉冲,再经RS触发器产生两个极性相反、对称的激励信号,通过驱动电路放大后从IC1的⑧脚和 11 脚输出。从IC1⑧脚和 11 脚输出的激励脉冲通过V4和V3放大后,再经T2耦合,驱动开关管V1和V2交替导通,从而使开关管进入他励式工作状态。开关电源进入稳定的他励式工作状态后,T3二次绕组输出的脉冲电压通过全波整流,在C1和C17两端分别产生稳定的44.5V和24V左右的直流电压。其中,44.5V直流电压通过防反向充电的隔离二极管D16不仅为蓄电池充电,而且为误差放大器提供取样电压。而24V电压第1路为TL494供电;第2路为充电、显示控制电路供电;第3路通过R9限流使发光二极管LED2发光,表明充电器已工作。

V1~V4 的 c、e 极两端并联的 D19、D18、D14、D13 是阻尼二极管,以保护 V1~V4不被过高的反向电压击穿;D11和D12组成温度补偿电路,以免过高的温度影响V3、V4的工作状态,最终给V1和V2带来危害;T3一次绕组上并联的C3和R1用作阻尼,以免T3进入自激振荡状态。D20、R35和D17、R28构成C14和C13钳位电路,并且在开关管截止期间为C14和C13提供快速放电回路,以便C14和C13在下一个振荡周期继续为开关管提供激励回路。

图2-56 BMCH-36型智能充电器电路原理图

稳压控制:该开关电源的稳压控制电路由电源控制芯片TL494(IC1)①、②脚内的误差放大器1、误差取样电路构成。由于取样电路对C1两端电压进行取样,所以该误差取样方式属于直接取样方式。

当市电电压降低或负载较重引起D16负极电压下降时,该电压通过R10、R11取样后的电压下降,IC1的①脚电位下降,即误差放大器1同相输入端电压下降,而反相输入端通过②脚接参考电压,两者比较后使误差放大器1输出低电平控制信号,该信号通过PWM比较器和RS触发器处理后,使IC1⑧脚、 11 脚输出的激励脉冲占空比增大,开关管V1和V2导通时间延长,开关变压器 T3 存储的能量增大,开关电源输出电压升高到正常值,实现稳压控制。若开关电源输出电压升高时,控制过程相反。IC1②脚输入的参考电压由 14 脚输出的基准电压通过电阻分压获得。

该开关电源输出电压还受温度开关ANb的控制。在冬季按下ANb开关,分压电阻R5、R6接入电路,使IC1的①脚输入的电压下降,致使IC1⑧、 11 脚输出的激励脉冲占空比增大,开关管导通时间延长,开关电源输出电压升高,D16负极电压在空载时为51V。在夏季断开ANb开关,R5、R6脱离电路,使IC1的①脚输入的电压升高,致使IC1⑧、 11 脚输出的激励脉冲占空比相对减小,开关管导通时间缩短,开关电源输出电压降低,D16负极电压在空载时为44.5V。

提示

若冬季在室内充电也最好采用低压方式,这样可延长蓄电池的使用寿命。而在夏季千万不可使用高电压挡充电,以免蓄电池被充坏(鼓包)。

充电、显示控制:该充电器的充电、显示控制电路由TL494(IC1)内的误差放大器1、误差放大器2和HA17358(IC2)、取样电阻R29、双色发光二极管LED1等元器件构成。其中R29是电流取样电阻,它串联在开关变压器T3的二次绕组和地之间,充电期间会在R29两端产生下正、上负的压降。这个压降不仅通过 R8、R***加到 IC2 的反相输入端⑥脚,而且通过R26、R25加到IC1的 15 脚,同时IC1 14 脚输出的5V电压经电阻限流也加到IC1 15 脚。

能量释放后的蓄电池两端电压下降,这样它在充电初期会使开关电源的负载较重,在稳压控制电路的作用下开关管导通时间较长,充电电流较大,为蓄电池快速充电,同时在R29两端建立的压降(负压)较高,一方面使IC1的 15 脚输入微弱的负电压,致使IC1内的误差放大器2输出高电平的控制信号,通过PWM电路将IC1⑧脚和 11 脚输出的激励脉冲占空比限制在一定范围内,避免开关管过电流损坏;另一方面因IC2的⑤脚接地,电压恒定为0,所以 IC2 的⑦脚输出高电平控制电压。该电压不仅通过 R1 限流,使双色发光二极管 LED1内的红色发光二极管发光,表明充电器工作在恒流充电状态,而且通过R6使V5导通,LED1内的绿色发光二极管因无供电不能发光。

随着恒流充电状态的不断进行,蓄电池两端电压逐渐升高,充电电流减小,在R29两端产生的压降使IC1 15 脚电位从负压变为0,IC1内的误差放大器2不影响开关电源的工作状态,但该压降仍会使充电指示灯LED1发光为红色,此时开关电源输出的电压在稳压控制电路作用下升高并保持稳定,D16负极电压恒定为44.5V(夏季)或51V(冬季),充电器进入恒压充电阶段。此阶段,随着蓄电池所充电压不断增加,充电电流进一步减小。当电流减小到转折电流后,在R29两端产生的压降减小,于是IC1的 14 脚输出的5V电压通过91kΩ电阻使IC2⑥脚输入的电压超过0,IC2的⑦脚输出低电平控制电压。该电压一路使LED1内的红色发光二极管因无导通电压而熄灭,表明快速充电结束;另一路使V5截止,V5的c极上的电压通过电阻限流使LED1内的绿色发光二极管发光,表明蓄电池已充足电。

过电流保护:当蓄电池或C1、C17、整流管等元器件异常使R29两端的负压过大时,通过R26、R25使IC1(TL494) 15 脚输入的负压过大,被IC1内部电路处理后,使IC1的⑧、 11 脚不能输出激励脉冲,开关管停止工作,避免了开关管因过电流损坏。

软启动电路:TL494④脚外接的C16是软启动控制电容。开机瞬间因C16两端电压为0,所以TL494 14 脚输出的5V基准电压通过C16和R20构成充电回路,在R20两端建立一个由高到低的电压。该电压通过TL494的④脚输入,经比较器处理后使⑧脚和 11 脚输出的激励脉冲占空比由小逐渐增大到正常,避免了开关管在开机瞬间过激励损坏,实现软启动控制。

欠电压保护:若TL494供电端 12 脚输入的电压低于7V时,它内部的欠电压保护电路动作,使TL494停止工作,实现欠电压保护。

【电子工程师资料分享圈】,一个能帮你全面提升技能、收入稳步提升的圈子!

这里不仅有关于电子工程师的专业技术资料、还有职场老兵的经验心得,是你的学习好帮手!

为什么要加入【电子工程师资料分享圈】,加入即可享受以下四大特权福利!

①年轻的酒窝的资料,大部分是圈主付费购买,现在免费分享给大家;

②免费帮你下载百度文库任何资料,每人每天限一次机会;

③你有任何疑问,可以在圈子提出,圈主和其他圈友一起帮你解答疑惑;

④圈主具备十几年的行业经验,会在年轻的酒窝不定时的分享一些自己的经验心得;

本圈属于终身会员制,现活动五折优惠,入圈只需9.9元,想加入趁现在!

在角度模块中使用注入的故事书Git 工作流CentOS 手动更换内核C#利用AForge实现摄像头信息采集超融合服务器和传统服务器有什么区别?【最新计算机毕业设计】JAVA基于微信小程序的医院核酸检测预约挂号系统Android 获取wifi连接历史记录
低功耗神级显卡(低功耗稳压器) 低压驱动芯片(ddr内存条芯片并联)
相关内容