eviews面板数据回归模型,eviews
一、Eviews对面板数据构建面板回归模型
数据:本文使用我国31个省份,10年(2003-2012年),5个变量。 其中LN表示对数化,CX表示储蓄,JYNX表示教育年限,GDP表示地区生产总值,LNFY表示老年抚养比率,SNFY表示少子抚养比率。 CX是被解释变量,剩下的是解释变量。
二.面板回归模型概述
图1
我们分别建立混合回归模型(也称为不变系数模型)、变截尾模型、变系数模型。 文件名为pooldata的面板回归。
图2
三. Eviews回归模型操作
图3
面板回归分析界面识别——
方框1 :解释的变量
框3 ) common coefficients,在此栏中输入的变量对所有截面成员具有相同的系数。 (可以理解混合效果)
cross—section specific。 在此列中输入的变量与pool中每个截面成员的系数不同。 (可以理解为变量系数)
周期特定。 在本栏输入的变量在poo中因时期而异。
方框2 )固定和随机实际上是在变截尾模型下,选择使用固定效果还是随机效果。
fixed ——f,random——r,none——n
输入解释为common的变量时:
f-f :个体时间点的固定效应模型
r-r :个体时间点的随机效应模型
f-n :个体固定效应模型
n-f :时间点固定效应模型
r-n :个体随机效应模型
3.1混合效应模型
图4
图5
上式结果表明该模型的拟合效果极低,这实际上与我们的一般认识一致。 用一个模型描绘30个省10年的回归,由于个体之间存在差异,存在时间差,用一个模型描绘整体特征效果不好。 在变量模型中,可以看到所有省的模型不匹配更适合数据。 教育年限和少子养育与储蓄相比,影响在0.05显著水平上没有影响。
3.2个体时点随机效应模型
图6
图7
结果表明,该模型拟合度大大提高,远优于混合效应模型。 其中GDP对储蓄率的影响很小。 固定效果(cross )之和接近0(8.88178e-16 ),固定效果(period )之和接近0 )0(1.00267E-15 )。 也就是说,偏差之和为0,各地区每年的平均值为-0.358。
3.3个体固定效应模型
图8
图9
该模型适应性好,少儿养育与储蓄相比无显著影响。 并且,Fixed Effect(Cross之和也为0,实际上共计1.15186E-15,可以推测为与0没有变化。 因为都表示了偏差。 31个固定效应之和为-0.051,即各地区平均切片。
3.4时间点固定效应模型
图10
该模型拟合度仅为0.224,表明模型效果极差,其中教育年限和少儿养育与储蓄率相比无显著影响。 固定效果(period )之和为-3.17801E-15,与0相同。 也就是说,偏差之和为0。 随着年龄的增长,这一偏差逐渐由负转正。 每年平均为1.293。
3.5个体随机效应模型
图11
图12
该模型拟合优度低,儿童养育与储蓄相比无显著影响,Randomeffect(Cross )之和为-5.41928E-15,与0相同。
3.5变量模型
图13
图14
图15
图16
变量模型拟合度最高,这与我们理解的一致。 多元回归方程描述了多个省会将大大提高模型的拟合度。