当前位置:首页 > 天道酬勤 > 正文内容

初中数学二次函数免费课件(初中二次函数图像)

张世龙2021年12月21日 19:56天道酬勤420

利用二次函数图像判断各系数之间的关系,是中考数学的常考题型。 由于综合性高、试题难,通常被放在选择题或填空题的最后一道题上,成为小题的压轴题。 因此,各位学生有必要认真熟悉这个题型的求解方法和技巧。

数学学习

一、基本原理:抛物线与系数的关系

已知二次函数y=ax2 bx c,(a0,a,b,c为各系数)

1、a与抛物线开口方向和大小的关系

抛物线开口朝向上a0,

抛物线开口向下a0,

|a|越大,抛物线的开口部越小

|a|越小抛物线的开口越大

2、a、b决定抛物线的对称轴及二次函数的最大最小值

1 )抛物线对称轴的公式(x=- b/2a

b=0时,对称轴为x=0,即y轴;

a、b为相同编号时,对称轴0,即对称轴位于y轴的左侧;

a、b为异号时,对称轴0,即对称轴位于y轴的右侧;

2 )二次函数的最大值

a0时,二次函数在x=- b/2a处取最小值(4ac - b )/4a

在A0的情况下,二次函数在x=- b/2a时取最大值(4ac - b )/4a

3、c即抛物线与y轴的交点

在二次函数y=ax2 bx c的情况下,当x=0时,y=c;

C0、C=0、C0,抛物线和坐标轴分别与y轴正轴、原点、y轴负轴相交。

4、=b- 4ac决定抛物线与x轴交点的个数

0时,抛物线与x轴有2个交点

=0时,抛物线与x轴具有交点

0时,抛物线与x轴没有交点

二、数形结合:代入特殊值

决定抛物线的开口方向、对称轴、最大值、与坐标轴的交点后,大多只能解决前面比较简单的问题。 我们还需要根据图形赋值,以解决主题中的难题。

的特殊值,通常有x=-1、x=-1、x=-2、x=2、x=对称轴等,还有图形中绘制的特殊数值,将这些特殊值代入二次函数解析式求出函数值,与图像结合

(1)与0进行比较

)2)与函数的最大值进行比较

(3)如果有线性函数,则与线性函数的值进行比较;

4 )或代入特殊值后,对得到的a、b、c式进行加减乘除运算等。

让我们结合例题详细说明一下。

align: left;">三、例题解析

例1、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0; ②a﹣b+c<0; ③x(ax+b)≤a+b; ④a<﹣1.其中正确的是( )

A. ①②③④ B. ①②③ C. ②③ D. ①②

解:∵抛物线与y轴的交点在x轴上方,

∴c>0,

∵抛物线的对称轴为直线x=− b/(2a) =1, (利用对称轴公式得出a、b的关系)

∴b=−2a,

∴2a+b+c=2a−2a+c=c>0,所以①正确;

∵抛物线与x轴的一个交点在点(3,0)左侧,

而抛物线的对称轴为直线x=1,

∴抛物线与x轴的另一个交点在点(−1,0)右侧,

∴当x=−1时,y<0, (代入特殊值x=−1,结合图像将函数值与0作比较)

∴a−b+c<0,所以②正确;

∵x=1时,二次函数有最大值,(代入特殊值x=1,得出函数最大值,二次函数的所有值都小于最大值)

∴ax2+bx+c≤a+b+c,

∴ax2+bx≤a+b,所以③正确;

∵直线y=−x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,

∴x=3时,一次函数值比二次函数值大,

即9a+3b+c<−3+c,(代入特殊值x=3,结合图像将二次函数值与一次函数值作比较)

而b=−2a,

∴9a−6a<−3,解得a<−1,所以④正确.

故答案为:A.

例2、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④(a+c)2﹣b2<0.其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

解:由图像可知:

①a<0, c>0

∴ac<0 正确

②∵顶点的横坐标为0.5

∴ x=− b/(2a) =1/2

(利用对称轴公式得出a、b的关系)

∴a+b=0 正确

③∵顶点的纵坐标为1

∴(4ac - b²)/4a=1(利用最值公式)

∴4ac﹣b2=4a正确

① 当x= 1时,y= a+b+c>0

当x= -1时,y= a-b+c<0 (a-b+c)(a+b+c)<0

∴(a+c)²﹣b²<0

(代入特殊值x=−1,x=1得到关于a、b、c表达式进行相乘结合图像将函数值与0作比较)

扫描二维码推送至手机访问。

版权声明:本文由花开半夏のブログ发布,如需转载请注明出处。

本文链接:https://www.zhangshilong.cn/work/26545.html

分享给朋友:

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。